
ARWINSS

The new Windows subsystem for
ReactOS / Windows

Outline

• Existing Win32 subsystem overview
– History
– Advantages
– Disadvantages and problems

• Introducing “Win32 subsystem v2.0”
– Why a new version?
– The beginning
– How was it made

• Architecture explained
– Brief overview
– The big picture
– The absence of X Windows dependency
– The role of Wine

• Arwinss and ReactOS
– Why is it so important?
– Benefits
– Work sharing

• Future of Arwinss
– Composite desktop support

• Further Information
• Screenshots

Win32 subsystem in trunk. History.

• Appeared as early as in 20th of May, 1999 (win32k),
committed by Rex, with early work of Emanuele
Aliberti, Eric Kohl, David Welch, Jason Filby, Casper
Hornstrup. Nothing really shown on the screen, just
the very basics of win32k.

• A lot of work has been done by them in the period of
1999-2001, introducing DCs, window stations,
desktops, mouse support, etc.

• GvG joined the 15th of February, 2003 and started
working on supporting VMWare Video drivers in
win32k along with Richard Campbell who worked on
windowing, drawing, hacking it to work.

Win32 subsystem history (cont)

• Gunnar wrote the timer implementation, with a lot of
code written by GvG and Richard Campbell in 2003.

• James Tabor joined the 7th of July, 2003 implementing
NtUserQueryWindow, along with Royce Mitchell at
about the same time. (David Welch was still
committing!)

• Thomas Weidenmueller joined the win32k
development the 1st of August, 2003 with menu
improvements.

• Aleksey joined win32k on 25th of August, 2003 with
NtGdiRealizePalette() fixes.

Win32 subsystem history (cont, even
more boring)

• Filip Navara made a substantial contribution along with
Mark Tempel also in 2003, with occasional commits by
Art Yerkes, Andrew Greenwood, Gregor Anich, Mike
Nordell, etc.

• Magnus Olsen joined win32k development the 16th of
March, 2005 with DirectX kernelmode support and
hacking here/hacking there.

• Modern history: Christoph von Wittich, Alex Ionescu,
Brandon Turner, Herve Poussineau, Saveliy Tretiakov,
Timo Kreuzer (his first commit was actually to win32k!
08.01.2007, rev.25352), Ged Murphy, Dmitry
Gorbachev, Gregor Schneider, Stefan Ginsberg, etc.

Win32 subsystem. Advantages.

• 30+ people worked on it over 10 years.

• Targets Windows XP’s Win32 subsystem
architecture

• Alex, and later, Timo made a big effort on
bringing win32k syscalls list to be compatible
with the real Windows syscalls.

• Real video drivers are supported (VMWare,
some video cards)

Win32 subsystem. Problems.

• 30+ people worked on it over 10 years. Quite enough time
and manpower, and still no satisfactory result. Why? Win32
with Windows design is a huge monster, which would need
10x more resources.

• Apps which don’t have win32-related problems could be
counted using the fingers of one hand.

• Numerous important bugs (move-mouse-to-download-files,
message queue and font rendering issues, etc…) are sitting
in bugzilla for YEARS.

• Only very few parts of Win32 subsystem really correspond
to Windows XP Win32 subsystem architecture, other parts
are incompatible (Wine or ReactOS-specific code).

Win32 subsystem V2.0

• Any good manager should try to target the
future instead of the present.

• Hence the decision - do a totally new version
of Win32 subsystem:
– A chance to put forward good design decisions

and throw bad out

– Not worry about trunk breakage

– Should ultimately be substantially better than
existing subsystem

Win32 subsystem V2.0 (cont)

• Historical attempts to do this are known in
ReactOS. All failed. To quote Filip Navara “It
[Win32 subsystem in ReactOS] should be
completely rewritten”.

• A unique solution is needed for this rewrite to
become successful. And it is found.

Win32 subsystem V2.0 (cont)

• A summary of “Why?”, as in “Why a new one,
why not improve existing one?”

– Why not improve Linux instead of doing ReactOS?

– Current version of win32ss is a mix of old Wine code,
old ReactOS specific code, and some good new code.

– Days and months spent to marking Wine’s code in
ReactOS’s win32ss and trying to sync it are wasted.

– ReactOS needs a perfectly working win32ss ASAP. It
can’t wait another 10 years.

Win32 subsystem V2.0 (cont)

• How? Writing a new win32ss would require
years of work?!

– Writing it from scratch – yes, it would take years.
In fact, that’s why all previous rewrites failed

– A new, radical solution becomes possible: Reuse
win32ss code from Wine project as much as
possible.

ARWINSS architecture

• Implements APIs exposed via USER32 and
GDI32 libraries.

• Bases on Wine source code

– Windowing and GDI code is fully isolated from
other parts of Wine, forming kind of a library

– Windows server code is also isolated from the rest
(most) of unnecessary Wineserver code

ARWINSS architecture (cont)

• USER32.DLL and GDI32.DLL are nearly unchanged
Wine source code

• WINENT.DRV – a custom, ReactOS-specific
user/gdi driver for fast graphics and windowing
operations

• WIN32K.SYS – low-level graphics support, user
server implementation, minimal Win32 support
for the kernel

• WINEX11.DRV – an optional user/gdi driver
allowing to use remote X Server instead of a local
display

ARWINSS architecture, the big picture

The absence of X Server

• A thorough reader would definitely ask: Wine
is tied to X Server, how can you avoid that?

• Easy answer: we don’t.

• Complex answer: Wine implements a special
layer of abstraction, called user/gdi driver,
which abstracts all X11 specific details in a
standalone library. ARWINSS implements its
own fast user/gdi driver.

The role of Wine

• ARWINSS takes the best from Wine:

– “Cheap” syncs of work done by hundreds of
developers for every new version (takes ~30
minutes to merge and test)

– At least 13495 apps from appdb.winehq.org
become supported, plus support of those apps
which Wine can’t run by design (hardware
protection, drivers, etc)

– Good, proven, regression tested source code

The role of Wine (cont)

• …and leaves the worst:

– Ugly emulation of NT kernel

– Incorrect call chains in kernel32/ntdll

– ntoskrnl.exe being just another service

– Very slow communication with Wineserver

– Wineserver as a nightmare

– UNIX dependencies

– …

ARWINSS and ReactOS

• Why is it so important?
– A smooth development strategy (testing in Wine is

always possible, comparing debug logs, finding what
goes wrong and where)

– Rapid development speed (a working version was
made mainly by one person within two months,
compare that with 10 years of work)

– Fixes huge amount of bugs at once (see “Potential
benefits” in the Arwinss wiki page [1])

– Real development plan, including switching ReactOS
to beta stage

ARWINSS and ReactOS

• We need ReactOS to be compatible, and we need it now

• Fastest path to real world usage

• Development resources optimized requiring less efforts
to keep user-mode components up to date

• It can easily bring usual features which took ReactOS
years to implement and they are still not done. For
example, printing support which is a must for any real
world usage.

Future of ARWINSS

• ARWINSS doesn’t provide just stability and
compatibility, it provides an extensibility for
implementing new features

• One example: composite desktop as seen in
Windows 7

• Another one: a terminal server

• We can try to win the race only when we have
the car, ARWINSS needs us and we need it to
move forward.

Future of ARWINSS

With your help we can take ReactOS to the place
it deserves, reaching end users in a good

shape and still growing…

Let’s look to the future, it will pay us back.

Further information

1. http://www.reactos.org/wiki/Arwinss - wiki page with
installing, testing and debugging HOWTOs.

2. http://www.reactos.org/wiki/Arwinss_technical -
Technical information, a starting point for Arwinss
hacking.

3. http://www.assembla.com/spaces/reactos/tickets -
Assembla ReactOS space, which should be used for
tracking Arwinss bugs and tasks.

4. http://svn.reactos.org/svn/reactos/branches/arwinss/
reactos/ - Web interface to the source code

5. svn://svn.reactos.org/reactos/branches/arwinss/react
os/ - SVN checkout url

http://www.reactos.org/wiki/Arwinss
http://www.reactos.org/wiki/Arwinss_technical
http://www.assembla.com/spaces/reactos/tickets
http://svn.reactos.org/svn/reactos/branches/arwinss/reactos/
http://svn.reactos.org/svn/reactos/branches/arwinss/reactos/

Screenshots. Firefox 3.5

Screenshots. Notepad

Screenshots. Desktop

Screenshots. Arwinss in Windows 2003 using X
Windows driver and ReactOS Winlogon

